Simple trigonometric substitutions with broad results

Vardan Verdiyan, Daniel Campos Salas

Often, the key to solve some intricate algebraic inequality is to simplify it by employing a trigonometric substitution. When we make a clever trigonometric substitution the problem may reduce so much that we can see a direct solution immediately. Besides, trigonometric functions have well-known properties that may help in solving such inequalities. As a result, many algebraic problems can be solved by using an inspired substitution.

We start by introducing the readers to such substitutions. After that we present some well-known trigonometric identities and inequalities. Finally, we discuss some Olympiad problems and leave others for the reader to solve.

Theorem 1. Let \(\alpha, \beta, \gamma \) be angles in \((0, \pi)\). Then \(\alpha, \beta, \gamma \) are the angles of a triangle if and only if

\[
\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1.
\]

Proof. First of all note that if \(\alpha = \beta = \gamma \), then the statement clearly holds. Assume without loss of generality that \(\alpha \neq \beta \). Because \(0 < \alpha + \beta < 2\pi \), it follows that there exists an angle in \((-\pi, \pi)\), say \(\gamma' \), such that \(\alpha + \beta + \gamma' = \pi \).

Using the addition formulas and the fact that \(\tan x = \cot \left(\frac{\pi}{2} - x \right) \), we have

\[
\tan \frac{\gamma'}{2} = \cot \frac{\alpha + \beta}{2} = \frac{1 - \tan \frac{\alpha}{2} \tan \frac{\beta}{2}}{\tan \frac{\alpha}{2} + \tan \frac{\beta}{2}},
\]

yielding

\[
\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma'}{2} + \tan \frac{\gamma'}{2} \tan \frac{\alpha}{2} = 1. \tag{1}
\]

Now suppose that

\[
\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1, \tag{2}
\]

for some \(\alpha, \beta, \gamma \) in \((0, \pi)\).

We will prove that \(\gamma = \gamma' \), and this will imply that \(\alpha, \beta, \gamma \) are the angles of a triangle. Subtracting (1) from (2) we get \(\tan \frac{\gamma}{2} = \tan \frac{\gamma'}{2} \). Thus \(\left| \frac{\gamma - \gamma'}{2} \right| = k\pi \) for some nonnegative integer \(k \). But \(\left| \frac{\gamma - \gamma'}{2} \right| \leq \left| \frac{\gamma}{2} \right| + \left| \frac{\gamma'}{2} \right| < \pi \), so it follows that \(k = 0 \).

That is \(\gamma = \gamma' \), as desired. \(\square \)
Theorem 2. Let α, β, γ be angles in $(0, \pi)$. Then α, β, γ are the angles of a triangle if and only if

$$\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} = 1.$$

Proof. As $0 < \alpha + \beta < 2\pi$, there exists an angle in $(-\pi, \pi)$, say γ', such that $\alpha + \beta + \gamma' = \pi$. Using the product-to-sum and the double angle formulas we get

$$\sin^2 \frac{\gamma'}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma'}{2} = \cos \frac{\alpha + \beta}{2} \left(\cos \frac{\alpha + \beta}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \right)$$

$$= \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$= \cos \alpha + \cos \beta$$

$$= \frac{(1 - 2 \sin^2 \frac{\alpha}{2}) + (1 - 2 \sin^2 \frac{\beta}{2})}{2}$$

$$= 1 - \sin^2 \frac{\alpha}{2} - \sin^2 \frac{\beta}{2}.$$

Thus

$$\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma'}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma'}{2} = 1.$$

(1)

Now suppose that

$$\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} = 1,$$

(2)

for some α, β, γ in $(0, \pi)$. Subtracting (1) from (2) we obtain

$$\sin^2 \frac{\gamma}{2} - \sin^2 \frac{\gamma'}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \left(\sin \frac{\gamma}{2} - \sin \frac{\gamma'}{2} \right) = 0,$$

that is

$$\left(\sin \frac{\gamma}{2} - \sin \frac{\gamma'}{2} \right) \left(\sin \frac{\gamma}{2} + \sin \frac{\gamma'}{2} + 2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \right) = 0.$$

The second factor can be written as

$$\sin \frac{\gamma}{2} + \sin \frac{\gamma'}{2} + \cos \frac{\alpha - \beta}{2} - \cos \frac{\alpha + \beta}{2} = \sin \frac{\gamma}{2} + \cos \frac{\alpha - \beta}{2},$$

which is clearly greater than 0. It follows that $\sin \frac{\gamma}{2} = \sin \frac{\gamma'}{2}$, and so $\gamma = \gamma'$, showing that α, β, γ are the angles of a triangle. □
Substitutions and Transformations

T1. Let α, β, γ be angles of a triangle. Let

$$A = \frac{\pi - \alpha}{2}, \quad B = \frac{\pi - \beta}{2}, \quad C = \frac{\pi - \gamma}{2}. \quad \text{Then } A + B + C = \pi, \text{ and } 0 \leq A, B, C < \frac{\pi}{2}.$$

This transformation allows us to switch from angles of an arbitrary triangle to angles of an acute triangle. Note that

- $\cyc(\sin \frac{\alpha}{2} = \cos A)$,
- $\cyc(\cos \frac{\alpha}{2} = \sin A)$,
- $\cyc(\tan \frac{\alpha}{2} = \cot A)$,
- $\cyc(\cot \frac{\alpha}{2} = \tan A)$,

where by \cyc we denote a cyclic permutation of angles.

T2. Let x, y, z be positive real numbers. Then there is a triangle with sidelengths $a = x + y$, $b = y + z$, $c = z + x$. This transformation is sometimes called Dual Principle. Clearly, $s = x + y + z$ and $(x, y, z) = (s-a, s-b, s-c)$. This transformation already triangle inequality.

S1. Let a, b, c be positive real numbers such that $ab + bc + ca = 1$. Using the function $f : (0, \frac{\pi}{2}) \to (0, +\infty)$, for $f(x) = \tan x$, we can do the following substitution

$$a = \tan \frac{\alpha}{2}, \quad b = \tan \frac{\beta}{2}, \quad c = \tan \frac{\gamma}{2},$$

where α, β, γ are the angles of a triangle ABC.

S2. Let a, b, c be positive real numbers such that $ab + bc + ca = 1$. Applying **T1** to **S1**, we have

$$a = \cot A, \quad b = \cot B, \quad c = \cot C,$$

where A, B, C are the angles of an acute triangle.

S3. Let a, b, c be positive real numbers such that $a + b + c = abc$. Dividing by abc it follows that $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = 1$. Due to **S1**, we can substitute

$$\frac{1}{a} = \tan \frac{\alpha}{2}, \quad \frac{1}{b} = \tan \frac{\beta}{2}, \quad \frac{1}{c} = \tan \frac{\gamma}{2},$$

that is

$$a = \cot \frac{\alpha}{2}, \quad b = \cot \frac{\beta}{2}, \quad c = \cot \frac{\gamma}{2},$$

where α, β, γ are the angles of a triangle.

S4. Let a, b, c be positive real numbers such that $a + b + c = abc$. Applying **T1** to **S3**, we have

$$a = \tan A, \quad b = \tan B, \quad c = \tan C,$$
where A, B, C are the angles of an acute triangle.

S5. Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 + 2abc = 1$. Note that since all the numbers are positive it follows that $a, b, c < 1$. Using the function $f : (0, \pi) \to (0, 1)$, for $f(x) = \sin \frac{x}{2}$, and recalling Theorem 2, we can substitute

$$a = \sin \frac{\alpha}{2}, \quad b = \sin \frac{\beta}{2}, \quad c = \sin \frac{\gamma}{2},$$

where α, β, γ are the angles of a triangle.

S6. Let a, b, c be positive real numbers such that $a^2 + b^2 + c^2 + 2abc = 1$. Applying T_1 to $S5$, we have

$$a = \cos A, \quad b = \cos B, \quad c = \cos C,$$

where A, B, C are the angles of an acute triangle.

S7. Let x, y, z be positive real numbers. Applying T_2 to expressions

$$\sqrt{\frac{yz}{(x+y)(x+z)}}, \quad \sqrt{\frac{xz}{(y+z)(y+x)}}, \quad \sqrt{\frac{xy}{(z+x)(z+y)}},$$

they can be substituted by

$$\sqrt{\frac{(s-b)(s-c)}{bc}}, \quad \sqrt{\frac{(s-c)(s-a)}{ca}}, \quad \sqrt{\frac{(s-a)(s-b)}{ab}},$$

where a, b, c are the sidelengths of a triangle. Recall the following identities

$$\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}, \quad \cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$

Thus our expressions can be substituted by

$$\sin \frac{\alpha}{2}, \quad \sin \frac{\beta}{2}, \quad \sin \frac{\gamma}{2},$$

where α, β, γ are the angles of a triangle.

S8. Analogously to $S7$, the expressions

$$\sqrt{\frac{x(x+y+z)}{(x+y)(x+z)}}, \quad \sqrt{\frac{y(x+y+z)}{(y+z)(y+x)}}, \quad \sqrt{\frac{z(x+y+z)}{(z+x)(z+y)}},$$

can be substituted by

$$\cos \frac{\alpha}{2}, \quad \cos \frac{\beta}{2}, \quad \cos \frac{\gamma}{2},$$

where α, β, γ are the angles of a triangle.
Further we present a list of inequalities and equalities that can be helpful in solving many problems or simplify them.

Well-known inequalities

Let \(\alpha, \beta, \gamma \) be angles of a triangle \(ABC \). Then

1. \(\cos \alpha + \cos \beta + \cos \gamma \leq \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} + \sin \frac{\gamma}{2} \leq \frac{3}{2} \)

2. \(\sin \alpha + \sin \beta + \sin \gamma \leq \cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} \leq \frac{3\sqrt{3}}{2} \)

3. \(\cos \alpha \cos \beta \cos \gamma \leq \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \leq \frac{1}{8} \)

4. \(\sin \alpha \sin \beta \sin \gamma \leq \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \leq \frac{3\sqrt{3}}{8} \)

5. \(\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{C}{2} \geq 3\sqrt{3} \)

6. \(\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \geq \sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{C}{2} \geq \frac{3}{4} \)

7. \(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma \leq \cos^2 \frac{\alpha}{2} + \cos^2 \frac{\beta}{2} + \cos^2 \frac{\gamma}{2} \leq \frac{9}{4} \)

8. \(\cot \alpha + \cot \beta + \cot \gamma \geq \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} \geq \sqrt{3} \)

Well-known identities

Let \(\alpha, \beta, \gamma \) be angles of a triangle \(ABC \). Then

1. \(\cos \alpha + \cos \beta + \cos \gamma = 1 + 4 \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \)

2. \(\sin \alpha + \sin \beta + \sin \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \)

3. \(\sin 2\alpha + \sin 2\beta + \sin 2\gamma = 4 \sin \alpha \sin \beta \sin \gamma \)

4. \(\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 + 2 \cos \alpha \cos \beta \cos \gamma \)

For arbitrary angles \(\alpha, \beta, \gamma \) we have

\[
\sin \alpha + \sin \beta + \sin \gamma - \sin(\alpha + \beta + \gamma) = 4 \sin \frac{\alpha + \beta}{2} \sin \frac{\beta + \gamma}{2} \sin \frac{\gamma + \alpha}{2}.
\]

\[
\cos \alpha + \cos \beta + \cos \gamma + \cos(\alpha + \beta + \gamma) = 4 \cos \frac{\alpha + \beta}{2} \cos \frac{\beta + \gamma}{2} \cos \frac{\gamma + \alpha}{2}.
\]
Applications

1. Let \(x, y, z \) be positive real numbers. Prove that
\[
\frac{x}{x + \sqrt{(x+y)(x+z)}} + \frac{y}{y + \sqrt{(y+z)(y+x)}} + \frac{z}{z + \sqrt{(z+x)(z+y)}} \leq 1.
\]
(Walther Janous, Crux Mathematicorum)

Solution. The inequality is equivalent to
\[
\sum \frac{1}{1 + \sqrt{(x+y)(x+z)}} \leq 1.
\]
Because the inequality is homogeneous, we can assume that \(xy + yz + zx = 1 \).
Let us apply substitution \(S_1: \text{cyc}(x = \tan \frac{\alpha}{2}) \), where \(\alpha, \beta, \gamma \) are angles of a triangle. We get
\[
\frac{(x+y)(x+z)}{x^2} = \left(\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} \right) \left(\tan \frac{\alpha}{2} + \tan \frac{\gamma}{2} \right) = \frac{1}{\sin^2 \frac{\alpha}{2}},
\]
and similar expressions for the other terms. The inequality becomes
\[
\frac{\sin \frac{\alpha}{2}}{1 + \sin \frac{\alpha}{2}} + \frac{\sin \frac{\beta}{2}}{1 + \sin \frac{\beta}{2}} + \frac{\sin \frac{\gamma}{2}}{1 + \sin \frac{\gamma}{2}} \leq 1,
\]
that is
\[
2 \leq \frac{1}{1 + \sin \frac{\alpha}{2}} + \frac{1}{1 + \sin \frac{\beta}{2}} + \frac{1}{1 + \sin \frac{\gamma}{2}}.
\]
On the other hand, using the well-known inequality \(\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} + \sin \frac{\gamma}{2} \leq \frac{3}{2} \)
and the Cauchy-Schwarz inequality, we have
\[
2 \leq \frac{9}{(1 + \sin \frac{\alpha}{2}) + (1 + \sin \frac{\beta}{2}) + (1 + \sin \frac{\gamma}{2})} \leq \sum \frac{1}{1 + \sin \frac{\alpha}{2}},
\]
and we are done. \(\blacksquare \)

2. Let \(x, y, z \) be real numbers greater than 1 such that \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2 \). Prove that
\[
\sqrt{x-1} + \sqrt{y-1} + \sqrt{z-1} \leq \sqrt{x+y+z}.
\]
(Iran, 1997)
Solution. Let \((x, y, z) = (a + 1, b + 1, c + 1)\), with \(a, b, c\) positive real numbers. Note that the hypothesis is equivalent to \(ab + bc + ca + 2abc = 1\). Then it suffices to prove that
\[
\sqrt{a} + \sqrt{b} + \sqrt{c} \leq \sqrt{a + b + c + 3}.
\]
Squaring both sides of the inequality and canceling some terms yields
\[
\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \leq \frac{3\sqrt{2}}{2}.
\]
Using substitution \(S5\) we get \(ab, bc, ca = (\sin^2 \frac{\alpha}{2}, \sin^2 \frac{\beta}{2}, \sin^2 \frac{\gamma}{2})\), where \(ABC\) is an arbitrary triangle. The problem reduces to proving that
\[
\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma}{2} \leq \frac{3\sqrt{2}}{2},
\]
which is well-known and can be done using Jensen inequality.

3. Let \(a, b, c\) be positive real numbers such that \(a + b + c = 1\). Prove that
\[
\sqrt{\frac{ab}{c + ab}} + \sqrt{\frac{bc}{a + bc}} + \sqrt{\frac{ca}{b + ca}} \leq \frac{3\sqrt{2}}{2}.
\]
\((Open Olympiad of FML No-239, Russia)\)

Solution. The inequality is equivalent to
\[
\sqrt{\frac{ab}{(c + a)(c + b)}} + \sqrt{\frac{bc}{(a + b)(a + c)}} + \sqrt{\frac{ca}{(b + c)(b + a)}} \leq \frac{3\sqrt{2}}{2}.
\]
Substitution \(S7\) replaces the three terms in the inequality by \(\sin^2 \frac{\alpha}{2}, \sin^2 \frac{\beta}{2}, \sin^2 \frac{\gamma}{2}\). Thus it suffices to prove \(\sin^2 \frac{\alpha}{2} + \sin^2 \frac{\beta}{2} + \sin^2 \frac{\gamma}{2} \leq \frac{3\sqrt{2}}{2}\), which clearly holds.

4. Let \(a, b, c\) be positive real numbers such that \((a + b)(b + c)(c + a) = 1\). Prove that
\[
ab + bc + ca \leq \frac{3}{4}.
\]
\((Cezar Lupu, Romania, 2005)\)

Solution. Observe that the inequality is equivalent to
\[
\left(\sum ab\right)^3 \leq \left(\frac{3}{4}\right)^3 (a + b)^2(b + c)^2(c + a)^2.
\]
Because the inequality is homogeneous, we can assume that \(ab + bc + ca = 1 \). We use substitution \(S1: \cyc(a = \tan \frac{\alpha}{2}) \), where \(\alpha, \beta, \gamma \) are the angles of a triangle. Note that

\[
(a + b)(b + c)(c + a) = \prod \left(\frac{\cos \frac{\gamma}{2}}{\cos \frac{\alpha}{2} \cos \frac{\beta}{2}} \right) = \frac{1}{\cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}}.
\]

Thus it suffices to prove that

\[
\left(\frac{4}{3} \right)^3 \leq \frac{1}{\cos^2 \frac{\alpha}{2} \cos^2 \frac{\beta}{2} \cos^2 \frac{\gamma}{2}},
\]
or

\[
4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} \leq \frac{3\sqrt{3}}{2}.
\]

From the identity \(4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} = \sin \alpha + \sin \beta + \sin \gamma \), the inequality is equivalent to

\[
\sin \alpha + \sin \beta + \sin \gamma \leq \frac{3\sqrt{3}}{2}.
\]

But \(f(x) = \sin x \) is a concave function on \((0, \pi)\) and the conclusion follows from Jensen’s inequality. ■

5. Let \(a, b, c \) be positive real numbers such that \(a + b + c = 1 \). Prove that

\[
a^2 + b^2 + c^2 + 2\sqrt{3}abc \leq 1.
\]

(Poland, 1999)

Solution. Let \(\cyc \left(x = \sqrt{\frac{bc}{a}} \right) \). It follows that \(\cyc(a = yz) \). The inequality becomes

\[
x^2y^2 + y^2z^2 + x^2z^2 + 2\sqrt{3}xyz \leq 1,
\]

where \(x, y, z \) are positive real numbers such that \(xy + yz + zx = 1 \). Note that the inequality is equivalent to

\[
(xy + yz + zx)^2 + 2\sqrt{3}xyz \leq 1 + 2xyz(x + y + z),
\]
or

\[
\sqrt{3} \leq x + y + z.
\]

Applying substitution \(S1 \cyc(x = \tan \frac{\alpha}{2}) \), it suffices to prove

\[
\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} \geq \sqrt{3}.
\]

The last inequality clearly holds, as \(f(x) = \tan \frac{x}{2} \) is convex function on \((0, \pi)\), and the conclusion follows from Jensen’s inequality. ■
6. Let \(x, y, z \) be positive real numbers. Prove that

\[
\sqrt{x(y + z)} + \sqrt{y(z + x)} + \sqrt{z(x + y)} \geq 2 \sqrt{\frac{(x + y)(y + z)(z + x)}{x + y + z}}
\]

\(\text{(Darij Grinberg)} \)

Solution. Rewrite the inequality as

\[
\sqrt{\frac{x(x + y + z)}{(x + y)(x + z)}} + \sqrt{\frac{y(x + y + z)}{(y + z)(y + x)}} + \sqrt{\frac{z(x + y + z)}{(z + x)(z + y)}} \geq 2.
\]

Applying substitution \(S8 \), it suffices to prove that

\[
\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} \geq 2,
\]

where \(\alpha, \beta, \gamma \) are the angles of a triangle. Using transformation \(T1 \) \(\text{cyc}(A = \frac{\pi - \alpha}{2}) \), where \(A, B, C \) are angles of an acute triangle, the inequality is equivalent to

\[
\sin A + \sin B + \sin C \geq 2.
\]

There are many ways to prove this fact. We prefer to use Jordan’s inequality, that is

\[
\frac{2\alpha}{\pi} \leq \sin \alpha \leq \alpha \quad \text{for all } \alpha \in (0, \frac{\pi}{2}).
\]

The conclusion immediately follows. \(\blacksquare \)

7. Let \(a, b, c \) be positive real numbers such that \(a + b + c + 1 = 4abc \). Prove that

\[
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3 \geq \frac{1}{\sqrt{ab}} + \frac{1}{\sqrt{bc}} + \frac{1}{\sqrt{ca}}.
\]

\(\text{(Daniel Campos Salas, Mathematical Reflections, 2007)} \)

Solution. Rewrite the condition as

\[
\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} + \frac{1}{abc} = 4.
\]

Observe that we can use substitution \(S5 \) in the following way

\[
\left(\frac{1}{bc}, \frac{1}{ca}, \frac{1}{ab} \right) = \left(2 \sin^2 \frac{\alpha}{2}, 2 \sin^2 \frac{\beta}{2}, 2 \sin^2 \frac{\gamma}{2} \right),
\]
where \(\alpha, \beta, \gamma \) are angles of a triangle. It follows that
\[
\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c} \right) = \left(\frac{2 \sin \frac{\beta}{2} \sin \frac{\gamma}{2}}{\sin \frac{\alpha}{2}}, \frac{2 \sin \frac{\gamma}{2} \sin \frac{\alpha}{2}}{\sin \frac{\beta}{2}}, \frac{2 \sin \frac{\alpha}{2} \sin \frac{\beta}{2}}{\sin \frac{\gamma}{2}} \right).
\]

Then it suffices to prove that
\[
\sin \frac{\beta}{2} \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} + \sin \frac{\gamma}{2} \sin \frac{\alpha}{2} \sin \frac{\beta}{2} + \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2} \geq \frac{3}{2} \geq \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} + \sin \frac{\gamma}{2}.
\]

The right-hand side of the inequality is well known. For the left-hand side we use transformation \(T2 \) backwards. Denote by \(x = s - a, y = s - b, z = s - c \), where \(s \) is the semiperimeter of the triangle. The left-hand side is equivalent to
\[
\frac{x}{y + z} + \frac{y}{x + z} + \frac{z}{x + y} \geq \frac{3}{2},
\]
which a famous Nesbitt’s inequality, and we are done. ■

8. Let \(a, b, c \in (0, 1) \) be real numbers such that \(ab + bc + ca = 1 \). Prove that
\[
\frac{a}{1 - a^2} + \frac{b}{1 - b^2} + \frac{c}{1 - c^2} \geq \frac{3}{4} \left(\frac{1 - a^2}{a} + \frac{1 - b^2}{b} + \frac{1 - c^2}{c} \right).
\]
(Calin Popa)

Solution. We apply substitution \(S1 \) \(cyc(a \equiv \tan \frac{A}{2}) \), where \(A, B, C \) are angles of a triangle. Because \(a, b, c \in (0, 1) \), it follows that \(\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2} \in (0, 1) \), that is \(A, B, C \) are angles of an acute triangle. Note that
\[
cyc \left(\frac{a}{1 - a^2} = \frac{\sin \frac{4}{2}}{\cos \frac{4}{2}} = \tan A \right).
\]

Thus the inequality is equivalent to
\[
\tan A + \tan B + \tan C \geq 3 \left(\frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan C} \right).
\]

Now observe that if we apply transformation \(T1 \) and the result in Theorem 1, we get
\[
\tan A + \tan B + \tan C = \tan A \tan B \tan C.
\]

Hence our inequality is equivalent to
\[
(\tan A + \tan B + \tan C)^2 \geq 3 (\tan A \tan B + \tan B \tan C + \tan A \tan C).
\]

This can be written as
\[
\frac{1}{2} (\tan A - \tan B)^2 + (\tan B - \tan C)^2 + (\tan C - \tan A)^2 \geq 0,
\]
and we are done. ■
9. Let x, y, z be positive real numbers. Prove that

$$
\sqrt{\frac{y + z}{x}} + \sqrt{\frac{z + x}{y}} + \sqrt{\frac{x + y}{z}} \geq \sqrt{\frac{16(x + y + z)^3}{3(x + y)(y + z)(z + x)}}.
$$

(Vo Quoc Ba Can, Mathematical Reflections, 2007)

Solution. Note that the inequality is equivalent to

$$
\sum_{\text{cyc}} (y + z) \sqrt{\frac{(x + y)(z + x)}{x(x + y + z)}} \geq \frac{4(x + y + z)}{\sqrt{3}}.
$$

Let use transformation $T2$ and substitution $S8$. We get

$$
cyc \left((y + z) \sqrt{\frac{(x + y)(z + x)}{x(x + y + z)}} \right) = \frac{a}{\cos \frac{a}{2}} = 4R \sin \frac{\alpha}{2},
$$

and

$$
\frac{4(x + y + z)}{\sqrt{3}} = \frac{4R (\sin \alpha + \sin \beta + \sin \gamma)}{\sqrt{3}},
$$

where α, β, γ are angles of a triangle with circumradius R. Therefore it suffices to prove that

$$
\frac{\sqrt{3}}{2} \left(\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} + \sin \frac{\gamma}{2} \right) \geq \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} + \sin \frac{\beta}{2} \cos \frac{\beta}{2} + \sin \frac{\gamma}{2} \cos \frac{\gamma}{2}.
$$

Because $f(x) = \cos \frac{x}{2}$ is a concave function on $[0, \pi]$, from Jensen’s inequality we obtain

$$
\frac{\sqrt{3}}{2} \geq \frac{1}{3} \left(\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} \right).
$$

Finally, we observe that $f(x) = \sin \frac{x}{2}$ is an increasing function on $[0, \pi]$, while $g(x) = \cos \frac{x}{2}$ is a decreasing function on $[0, \pi]$. Using Chebyshev’s inequality, we have

$$
\frac{1}{3} \left(\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} + \sin \frac{\gamma}{2} \right) \left(\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} \right) \geq \sum \sin \frac{\alpha}{2} \cos \frac{\alpha}{2},
$$

and the conclusion follows. ■
Problems for independent study

1. Let a, b, c be positive real numbers such that $a + b + c = 1$. Prove that
 \[
 \frac{a}{\sqrt{b + c}} + \frac{b}{\sqrt{c + a}} + \frac{c}{\sqrt{a + b}} \geq \frac{\sqrt{3}}{2}.
 \]
 (Romanian Mathematical Olympiad, 2005)

2. Let a, b, c be positive real numbers such that $a + b + c = 1$. Prove that
 \[
 \sqrt{\frac{1}{a} - 1} \sqrt{\frac{1}{b} - 1} + \sqrt{\frac{1}{b} - 1} \sqrt{\frac{1}{c} - 1} + \sqrt{\frac{1}{c} - 1} \sqrt{\frac{1}{a} - 1} \geq 6.
 \]
 (A. Teplinsky, Ukraine, 2005)

3. Let a, b, c be positive real numbers such that $ab + bc + ca = 1$. Prove that
 \[
 \frac{1}{\sqrt{a + b}} + \frac{1}{\sqrt{b + c}} + \frac{1}{\sqrt{c + a}} \geq 2 + \frac{1}{\sqrt{2}}.
 \]
 (Le Trung Kien)

4. Prove that for all positive real numbers a, b, c,
 \[
 (a^2 + 2)(b^2 + 2)(c^2 + 2) \geq 9(ab + bc + ca).
 \]
 (APMO, 2004)

5. Let x, y, z be positive real numbers such that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$. Prove that
 \[
 \sqrt{x + yz} + \sqrt{x + yz} + \sqrt{x + yz} \geq \sqrt{xyz} + \sqrt{x} + \sqrt{y} + \sqrt{z}.
 \]
 (APMO, 2002)

6. Let a, b, c be positive real numbers. Prove that
 \[
 \frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} \geq 4 \left(\frac{a}{b + c} + \frac{b}{c + a} + \frac{c}{a + b} \right).
 \]
 (Mircea Lascu)

7. Let a, b, c be positive real numbers, such that $a + b + c = \sqrt{abc}$. Prove that
 \[
 ab + bc + ca \geq 9(a + b + c).
 \]
 (Belarus, 1996)
8. Let a, b, c be positive real numbers. Prove that

$$\frac{b + c}{a} + \frac{c + a}{b} + \frac{a + b}{c} + 2\sqrt{\frac{abc}{(a + b)(b + c)(c + a)}} \geq 2$$

(Bui Viet Anh)

9. Let a, b, c be positive real numbers such that $a + b + c = abc$. Prove that

$$(a - 1)(b - 1)(c - 1) \leq 6\sqrt{3} - 10.$$

(Gabriel Dospinescu, Marian Tetiva)

10. Let a, b, c be nonnegative real numbers such that $a^2 + b^2 + c^2 + abc = 4$. Prove that

$$0 \leq ab + bc + ca - abc \leq 2.$$

(Titu Andreescu, USAMO, 2001)

REFERENCES

[1.] Titu Andreescu, Zuming Feng, 103 Trigonometry Problems: From the Training of the USA IMO Team, Birkhauser, 2004

[8.] Crux Mathematicorum and Mathematical Mayhem (Canada)